STUDY AND SIMULATION OF A QAM-OFDM SYSTEM

Vikas Kumar Yadav¹, Kuldeep Sharma²

¹Vikas Kumar Yadav (Research Scholar), ECE Department, Monad University, U.P., India
²Kuldeep Sharma (Assistant Professor & Head), ECE Department, Monad University, U.P., India

Abstract: In this report, the performance analysis of 64 QAM-OFDM wireless communication systems affected by AWGN in terms of Symbol Error Rate and Throughput is addressed. 64 QAM (64 ary Quadrature Amplitude Modulation) is one of the effective digital modulation technique as it is more power efficient for larger values of M(64). The MATLAB script based model of the 64 QAM-OFDM system with normal AWGN channel and Rayleigh fading channel has been made for study error performance and throughput under different channel conditions. This simulated model maximizes the system throughput in the presence of narrowband interference, while guaranteeing a SER below a predefined threshold. The SER calculation is accomplished by means of modelling the decision variable at the receiver as a particular case of quadratic form D in complex Gaussian random variables. Lastly comparative study of SER performance of 64 QAM-OFDM simulated & 64 QAM-OFDM theoretical under AWGN channel has been given. Also performance of the system is given in terms of throughput (received bits/ofm symbol) is given in a plot for different SNR.

Keywords –64 QAM, BPSK, OFDM, PDF, SNR

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing In OFDM systems, the available bandwidth is broken into many narrower subcarriers and the data is divided into parallel streams, one for each subcarrier each of which is then modulated using varying levels of QAM modulation e.g. QPSK, 16QAM, 64QAM or higher orders as required by the desired signal quality. The linear combination of the instantaneous signals on each of the subcarriers constitutes the OFDM symbols. The spectrum of OFDM is depicted in fig.1.1. Each of the OFDM symbol is preceded by a cyclic prefix (CP) which is effectively used to eliminate Intersymbol Interference (ISI) and the subcarriers are also very tightly spaced for efficient utilization of the available bandwidth [1].

OFDM provides an effective method to mitigate intersymbol interference (ISI) in wideband signalling over multipath radio channels. The main idea is to send the data in parallel over a number of narrowband flat subchannels (see Fig. 1.2). This is efficiently achieved by using a set of overlapped orthogonal signals to partition the channel. A transceiver can be realized using a number of coherent QAM modems which are equally spaced in the frequency domain and which can be implemented using the IDFT on the transmitter end and the DFT on the receiving end [6,7]. Due to the fact that the intercarrier spacing in OFDM is relatively small, OFDM transceivers are somewhat more sensitive to phase noise by comparison to single carrier transceivers. It is the purpose of this paper to examine the impact of L.O. phase noise on the BER performance of OFDM signals over both AWGN and frequency selective channels. The paper first discusses the relationship between the continuous time, continuous frequency L.O. phase noise model and the discrete time, discrete frequency process that is seen by the OFDM system. An analysis of the OFDM receiver is presented to assess the impact of the phase noise on the decision variables at the receiver (which are the received signal samples corrupted by noise, just before making hard decisions regarding the received data). It is then shown that the effect of phase noise on the decision variables is composed of two components: a common component which affects all data symbols equally and as such causes a sometimes visible rotation of the signal constellation, and a second component which is more like Gaussian noise and thus affects the received data points in a somewhat random manner. This representation in terms of common and foreign components has been pointed out in the literature [8]–[10]. What we introduce here that is different, is that the temporal variations of the rotational component and its dependence on the frequency spacing between the system carriers play an important role in determining the symbol-error rate performance of the OFDM system, particularly at higher operating SNR conditions. Taking the temporal variations of the rotational component of
the phase noises into account, we then proceeded to derive analytical expressions for the average probability of error for 64-QAM OFDM. The resulting formulas are in a closed form which includes several integrals over the Gaussian probability curve. The analytical results are then used to quantify the impact of certain phase noise masks on the average BER performance under different SNR conditions and also subject to variations of the OFDM frame length. Computer simulation is used to treat the problem over channels with arbitrary multipath profiles and also, to investigate the impact of phase noise on channel estimation and channel equalization. The simulation model requires a user specified phase noise mask as an input. It also requires the user to identify system parameters such as sampling frequency, OFDM frame length and the size of the signal constellation.

1.1. System Description and Model
A functional block diagram of an OFDM system is shown in Fig. 1.3. The incoming data is first applied to a baseband M-ary QAM modulator which maps each L= \(\log_2 M\) binary bits into one of the M constellation points. The M-QAM points coming out of the baseband modulator are then grouped into frames, each containing N complex constellation points. Each frame is applied to an inverse DFT processor which outputs N-complex transform coefficients. A circular prefix of length Np is then appended to the N complex transform coefficients to form a transmitted frame which is N + Np points long. The transmitted frame is then applied to a serial-to-parallel converter and then applied to an IQ modulator to translate the spectral content of the signal to some UHF or microwave frequency band. The IQ modulation is accomplished by multiplying the complex envelope of the signal with the output of a local oscillator. This step is often accomplished at a convenient IF frequency and the modulated signal is then upconverted using a higher frequency local oscillator. For our purpose, it is sufficient to consider one local oscillator as indicated in, Fig. 1.3. The local oscillator is not perfect. Its output is usually degraded due to many factors, including short term frequency drift that may in part be caused by temperature variations. The short term frequency drifts manifest themselves as phase noise which has traditionally been characterized in terms of its power spectral density.

A functional block diagram of a simplified OFDM receiver is depicted in Fig. 1.4. The received signal, usually corrupted by additive noise and channel distortion, is first applied to a low noise microwave front-end where it is amplified and perhaps filtered to suppress unwanted interference. The received signal is then downconverted to an IF frequency and applied to an I&Q demodulator which brings the signal down to baseband in the form in-phase and quadrature components. These in turn are applied to a A/D converter which outputs complex baseband samples at a rate of one sample per received symbol. The complex samples are then grouped into received frames which contain N + Np points each. Assuming that the frame synchronization is working, the received frames are first reduced to N points each by removing the circular prefix, and then are applied to an N -point DFT processor. The received frame is also used to estimate the frequency response of the channel. The DFT output is then equalized to generate -decision variables which may be used to recover the data either based on threshold comparison or applied to a sequential estimation procedure such as the Viterbi algorithm. The important block in Fig. 1.4 is the local oscillator, which like the transmitter local oscillator may have its own phase noise which will degrade the quality of the received signal and the overall BER performance. For analog TV (ATV) applications the Tx local oscillator is of much better spectral purity since this exists only in the base station and as such it does not have to be very...
The Rx local oscillator signal on the other hand is provided with a cheap commercial TV tuner which exhibits high levels of phase noise. It is for this reason that we will concentrate on the Rx LO phase noise without explicit mention of the Tx LO phase noise. It should however be mentioned that the analysis we will develop can still be applied to cases where the phase noise is introduced by a combination of both local oscillators.

1. M-QAM constellation

The number of points in the constellation is defined as $M = 2^b$, where b is the number of bits in each constellation symbol. In this analysis, it is desirable to restrict to be an even number for the following reasons:

1. Half the bits are represented on the real axis and half the bits are represented on imaginary axis. The in-phase and quadrature signals are independent at level Pulse Amplitude Modulation (PAM) signals. This simplifies the design of mapper.

2. For decoding, symbol decisions may be applied independently on the real and imaginary axis, simplifying the receiver implementation. Note that the above square constellation is not the most optimal scheme for a given signal to noise ratio.

1.2.1. Average energy of an M-QAM constellation

In a general M-QAM constellation where $M = 2^b$ and b is number of bits in each constellation is even, the alphabets used are:

\[a_{MAM} = \{ \pm (2M - 1), \pm (2M - 1)j \} \quad \text{where } m \in \{1, ..., \frac{N}{2} \} \quad (1) \]

For example, considering a 64-QAM ($M=64$) constellation, $m \in \{1,2,3,4\}$ and the alphabets are:

\[a_{64 \text{QAM}} = \{ \pm 7 \pm 7j, \pm 7 \pm 3j, \pm 7 \pm 1j, \pm 3 \pm 7j, \pm 3 \pm 3j, \pm 3 \pm 1j, \pm 1 \pm 7j, \pm 1 \pm 3j, \pm 1 \pm 1j \} \]

For computing the average energy of the M-QAM constellation, let us proceed as follows: (a) Find the sum of energy of the individual alphabets:

\[E_\alpha = \sum_{m=1}^{N} |(2m-1) + j(2m-1)|^2 = \frac{NM}{3}(M-1) \]

(b) Each alphabet is used $2\sqrt{M}$ times in the M-QAM constellation.

(c) So, to find the average energy from M constellation symbols, divide the product of (a) and (b) by M.

Plugging in the number for 64-QAM:

\[E_{64 \text{QAM}} = \frac{2}{3}(64-1) = 42 \]

From the above explanations, it is reasonably intuitive to guess that the scaling factor $\sqrt{\frac{1}{10}} \sqrt{\frac{1}{42}}$ which is seen along with 16-QAM, 64-QAM constellations respectively is for normalizing the average transmit power to unity.

1.2.2. Types of constellation points in M-QAM

There are three types of constellation points in a general M-QAM constellation: (a) Constellation points in the corner (red-square) The number of constellation points in the corner in any M-QAM constellation is always 4, i.e

\[N_{\text{corner}} = 4 \]

(b) Constellation points in the inside (magenta-diamond) The number of constellation points inside is,

\[N_{\text{inside}} = (\sqrt{M} - 2)(\sqrt{M} - 2) \quad (3) \]

(c) Constellation points neither at the corner, nor at the center (blue-star) The number of constellation points of this category is:

\[N_{\text{neither inside nor corner}} = 4(\sqrt{M} - 2) \quad (4) \]

For example with M=64, there are 24 constellation points in the inside.

1.4. Additive White Gaussian Noise (AWGN) channel

Let the received symbol is,

\[y = k\sqrt{E_s} + n \]

where E_s is the energy, $k = \sqrt{\frac{1}{2(M-1)}}$ is the normalizing factor S is the transmit symbol and n is the noise. Assume that the additive noise n follows the Gaussian probability distribution function.

\[p(x) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad (5) \]

With mean $\mu = 0$ and variance $\sigma^2 = \frac{N_0}{2}$.

Symbol in the inside $l=+1$, $Q=+1$ (magenta-diamond) The conditional probability distribution function (PDF) of y given that the transmitted symbol is

\[\{ k\sqrt{E_s} + k\sqrt{E_s} \} \]

2. OFDM MODEL

All The OFDM system was modeled using MATLAB to allow various parameters of the system to be varied and tested. The aim of doing the simulations was to measure the performance of OFDM under different channel conditions, and to allow for
different OFDM configurations to be tested. Four main criteria were used to assess the performance of the OFDM system, which were its tolerance to multipath delay spread, peak power clipping, channel noise and time synchronization errors. The OFDM system was modeled using the Communications Toolbox, Signal Processing Toolbox and Simulink of MATLAB, and is shown in Figure 2.1 A brief description of the model is provided below.

Guard Period: The guard period used was made up of two sections. Half of the guard period time is a zero amplitude transmission. The other half of the guard period is a cyclic extension of the symbol to be transmitted. This was to allow for symbol timing to be easily recovered by envelope detection. However it was found that it was not required in any of the simulations as the timing could be accurately determined position of the samples. After the guard has been added, the symbols are then converted back to a serial time waveform. This is then the base band signal for the OFDM transmission.

Channel: A channel model is then applied to the transmitted signal. The model allows for the signal to noise ratio, multipath, and peak power clipping to be controlled. The signal to noise ratio is set by adding a known amount of white noise to the transmitted signal. Multipath delay spread is then added by simulating the delay spread using an FIR filter. The length of the FIR filter represents the maximum delay spread, while the coefficient amplitude represents the reflected signal magnitude.

Receiver: The receiver basically does the reverse operation to the transmitter. The guard period is removed. The FFT of each symbol is then performed to find the original transmitted spectrum. The phase angle of each transmission carrier is then evaluated and converted back to the data word by demodulating the received phase. The data words are then combined back to the same word size as the original data.

OFDM generation
To generate OFDM successfully, the relationship between all the carriers must be carefully controlled to maintain the orthogonality of the carriers. For this reason, OFDM is generated by first choosing the spectrum required, based on the input data, and modulation scheme used. Each carrier to be produced is assigned some data to transmit. The required amplitude and phase of the carrier is then calculated based on DQPSK. The required spectrum is then converted back to its time domain signal using an Inverse Fourier Transform. In most applications, an Inverse Fast Fourier Transform (IFFT) is used. The IFFT performs the transformation very efficiently, and provides a simple way of ensuring the carrier signals produced are orthogonal.

4. Parameters of an actual OFDM System
Following are the parameters of Wi-Fi / IEEE 802.11a which is a system based on OFDM:

<table>
<thead>
<tr>
<th>Table 4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rates</td>
</tr>
</tbody>
</table>

2.1 Fig. OFDM model used for simulation

3. OFDM

Serial to Parallel Conversion: The input serial data stream is formatted into the word size required for transmission, e.g. 2 bits/word for QPSK, and shifted into a parallel format. The data is then transmitted in parallel by assigning each data word to one carrier in the transmission.

Modulation of Data: The data to be transmitted on each carrier is then differentially encoded with previous symbols, and then mapped into a PSK format. Since differential encoding requires an initial phase reference an extra symbol is added at the start for this purpose. The data on each symbol is then mapped to a phase angle based on the modulation method. For example, for QPSK the phase angles used are 0, 90, 180, and 270 degrees. The use of phase shift keying produces a constant amplitude signal and was chosen for its simplicity and to reduce problems with amplitude fluctuations due to fading.

Inverse Fourier Transform: After the required spectrum is worked out, an inverse Fourier transform is used to find the corresponding time waveform. The guard period is then added to the start of each symbol.
6. SIMULATION

Simulation of basic OFDM system was studied. In the study the following features have been taken care of:

- Encoding (Linear and Convolution)
- Pilot carriers
- Multipath in the channel

For each simulation, observed the following things:

- BER between the transmitted and received signals
- Constellation diagrams for transmitted and received signals
- Frequency spectrum of the channel

Fig 6.1: Simulink Model of BPSK Scheme

The measurement of the performance in communication systems has always been a matter of extreme interest since their very origin [1–3]. Besides the channel capacity, which basically provides information about the limiting error-free information rate that can be achieved, this performance is usually quantified in terms of the Symbol Error Rate (SER) or the Bit Error Rate (BER). Depending on the characteristics of the channel fading and the modulation scheme, the performance analysis can be conducted following different approaches. One of the milestone reference works in this area was published by Simon and Alouini [4], where the performance of a number of digital communication systems under different fading conditions was analyzed following a common strategy. Most of the results provided in this paper allows obtaining the SER in exact closed-form, whereas in other cases a numerical integration was necessary.
The appearance of new digital communication systems that employ new modulation or transmission schemes leads to the necessity of evaluating their performance in order to enable a fair comparison with the existing techniques. Some examples are the use of multiple antennas, usually referred to as multiple-input multiple-output (MIMO) systems, or the orthogonal frequency division multiplexing (OFDM) technique. Both MIMO and OFDM have been incorporated in many commercial and under-development wireless communication systems.

7. METHODOLOGY

1. Use OFDM Specifications like FFT Size, Number of Data Subcarriers, Number of Bits Per OFDM Symbol (Same as the Number of Subcarriers for BPSK), Number of OFDM Symbols
2. Find Out Modulation & Average Energy of 64-QAM
3. Find out SNR according to the accounting for the used subcarriers and cyclic prefix.
4. Find out Transmitter Input
5. Now Calculate Gaussian Noise of Unit Variance, 0 Mean
6. Add Noise to the Transmitter Input
7. Formatting the Received Vector into Symbols and Converting to Frequency Domain
8. Apply Demodulation and Converting to Vector
9. Counting the Errors by Subtracting output Demodulated Vector on receiving side from the Transmitter input.

8. RESULTS AND DISCUSSIONS

COMPARATIVE BER PERFORMANCE OF M-ARY QAM-OFDM: The Bit Error Rate (BER) performance against signal to noise ratio (Eb/No) of 64QAM-OFDM & 128QAM-OFDM in both AWGN channel & multipath fading channel has been shown in figure 4 & figure 5 respectively.

The BER decreases sharply with the increase in the signal to noise ratio in both AWGN channel & multipath fading channel but the bit error rate in multipath fading channel is higher than normal AWGN channel.

9. CONCLUSION

In this document, an algorithm is designed to maximize the OFDM system throughput in the presence of AWGN imperfect channel estimation. The average throughput of the OFDM system is maximized under the constraint of a BER below a target value. As expected, the average throughput increases as the SIR increase, respectively. Moreover, increasing the channel estimation error variance reduces the average throughput. In future work, we will extend the proposed algorithm to include power loading, and impose a constraint on the maximum transmit power to reduce the OFDM cognitive user spectrum leakage, in addition to considering spectrum sculpting techniques.

REFERENCES

